ML Reviews

dynamic causal model

A type of causal model; for the case of [[causal-navigation-by-continuous-time-neural-networks]], given a dynamical system governed by:

dxdt=Fθ(x(t),I(t))\frac{d\mathrm{x}}{dt} = F_\theta(\mathrm{x}(t), \mathrm{I}(t))

we can factorize FθF_\theta into:

dxdt=(A+I(t)B)x(t)+CI(t)\frac{d\mathrm{x}}{dt} = (A + \mathrm{I}(t)B)\mathrm{x}(t) + C\mathrm{I}(t)

where A,B,CA, B, C are partial derivatives of FθF_\theta with respect to node hidden states x(t)\mathrm{x}(t) and inputs I(t)\mathrm{I}(t).